меню

Решение треугольника c катетом 6500 и углом 15 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=1741.5
b=6500
c=6729.5
15°
75°
S=5660182
P=14971
r=756
R=3364.8
h=1682.2
mc=3364.8

Гипотенуза:
c =
b
cos(α°)
=
6500
cos(15°)
=
6500
0.9659
= 6729.5

Угол:
β° = 90°-α°
= 90°-15°
= 75°

Высота:
h = b·sin(α°)
= 6500·sin(15°)
= 6500·0.2588
= 1682.2

Катет:
a = h·
c
b
= 1682.2·
6729.5
6500
= 1741.6
или:
a =  c2 - b2
=  6729.52 - 65002
=  45286170 - 42250000
=  3036170
= 1742.5
или:
a = c·sin(α°)
= 6729.5·sin(15°)
= 6729.5·0.2588
= 1741.6
или:
a = c·cos(β°)
= 6729.5·cos(75°)
= 6729.5·0.2588
= 1741.6
или:
a =
h
cos(α°)
=
1682.2
cos(15°)
=
1682.2
0.9659
= 1741.6
или:
a =
h
sin(β°)
=
1682.2
sin(75°)
=
1682.2
0.9659
= 1741.6
или:
a =  
c2 -  c4- 4c2h2
2
=  
6729.52 -  6729.54- 4·6729.52·1682.22
2
=  
45286170 -  2.0508371932689E+15- 4·45286170·2829797
2
=  
45286170 -  1.5382345212389E+15
2
= 1741.5

Площадь:
S =
h·c
2
=
1682.2·6729.5
2
= 5660182

Радиус описанной окружности:
R =
c
2
=
6729.5
2
= 3364.8

Медиана:
Mc =
c
2
=
6729.5
2
= 3364.8

Радиус вписанной окружности:
r =
a+b-c
2
=
1741.5+6500-6729.5
2
= 756

Периметр:
P = a+b+c
= 1741.5+6500+6729.5
= 14971
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: