меню

Решение треугольника c катетом 468 и углом 19 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=161.16
b=468
c=494.98
19°
71°
S=37712.5
P=1124.1
r=67.09
R=247.49
h=152.38
mc=247.49

Гипотенуза:
c =
b
cos(α°)
=
468
cos(19°)
=
468
0.9455
= 494.98

Угол:
β° = 90°-α°
= 90°-19°
= 71°

Высота:
h = b·sin(α°)
= 468·sin(19°)
= 468·0.3256
= 152.38

Катет:
a = h·
c
b
= 152.38·
494.98
468
= 161.16
или:
a =  c2 - b2
=  494.982 - 4682
=  245005.2 - 219024
=  25981.2
= 161.19
или:
a = c·sin(α°)
= 494.98·sin(19°)
= 494.98·0.3256
= 161.17
или:
a = c·cos(β°)
= 494.98·cos(71°)
= 494.98·0.3256
= 161.17
или:
a =
h
cos(α°)
=
152.38
cos(19°)
=
152.38
0.9455
= 161.16
или:
a =
h
sin(β°)
=
152.38
sin(71°)
=
152.38
0.9455
= 161.16
или:
a =  
c2 -  c4- 4c2h2
2
=  
494.982 -  494.984- 4·494.982·152.382
2
=  
245005.2 -  60027548027- 4·245005.2·23219.7
2
=  
245005.2 -  37271759057
2
= 161.16

Площадь:
S =
h·c
2
=
152.38·494.98
2
= 37712.5

Радиус описанной окружности:
R =
c
2
=
494.98
2
= 247.49

Медиана:
Mc =
c
2
=
494.98
2
= 247.49

Радиус вписанной окружности:
r =
a+b-c
2
=
161.16+468-494.98
2
= 67.09

Периметр:
P = a+b+c
= 161.16+468+494.98
= 1124.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: