меню

Решение треугольника c катетом 5,7 и углом 36 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=4.139
b=5.7
c=7.046
36°
54°
S=11.8
P=16.89
r=1.397
R=3.523
h=3.35
mc=3.523

Гипотенуза:
c =
b
cos(α°)
=
5.7
cos(36°)
=
5.7
0.809
= 7.046

Угол:
β° = 90°-α°
= 90°-36°
= 54°

Высота:
h = b·sin(α°)
= 5.7·sin(36°)
= 5.7·0.5878
= 3.35

Катет:
a = h·
c
b
= 3.35·
7.046
5.7
= 4.141
или:
a =  c2 - b2
=  7.0462 - 5.72
=  49.65 - 32.49
=  17.16
= 4.142
или:
a = c·sin(α°)
= 7.046·sin(36°)
= 7.046·0.5878
= 4.142
или:
a = c·cos(β°)
= 7.046·cos(54°)
= 7.046·0.5878
= 4.142
или:
a =
h
cos(α°)
=
3.35
cos(36°)
=
3.35
0.809
= 4.141
или:
a =
h
sin(β°)
=
3.35
sin(54°)
=
3.35
0.809
= 4.141
или:
a =  
c2 -  c4- 4c2h2
2
=  
7.0462 -  7.0464- 4·7.0462·3.352
2
=  
49.65 -  2465.1- 4·49.65·11.22
2
=  
49.65 -  236.81
2
= 4.139

Площадь:
S =
h·c
2
=
3.35·7.046
2
= 11.8

Радиус описанной окружности:
R =
c
2
=
7.046
2
= 3.523

Медиана:
Mc =
c
2
=
7.046
2
= 3.523

Радиус вписанной окружности:
r =
a+b-c
2
=
4.139+5.7-7.046
2
= 1.397

Периметр:
P = a+b+c
= 4.139+5.7+7.046
= 16.89
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: