меню

Решение треугольника c катетом 5.82 и углом 37 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=4.382
b=5.82
c=7.288
37°
53°
S=12.76
P=17.49
r=1.457
R=3.644
h=3.502
mc=3.644

Гипотенуза:
c =
b
cos(α°)
=
5.82
cos(37°)
=
5.82
0.7986
= 7.288

Угол:
β° = 90°-α°
= 90°-37°
= 53°

Высота:
h = b·sin(α°)
= 5.82·sin(37°)
= 5.82·0.6018
= 3.502

Катет:
a = h·
c
b
= 3.502·
7.288
5.82
= 4.385
или:
a =  c2 - b2
=  7.2882 - 5.822
=  53.11 - 33.87
=  19.24
= 4.386
или:
a = c·sin(α°)
= 7.288·sin(37°)
= 7.288·0.6018
= 4.386
или:
a = c·cos(β°)
= 7.288·cos(53°)
= 7.288·0.6018
= 4.386
или:
a =
h
cos(α°)
=
3.502
cos(37°)
=
3.502
0.7986
= 4.385
или:
a =
h
sin(β°)
=
3.502
sin(53°)
=
3.502
0.7986
= 4.385
или:
a =  
c2 -  c4- 4c2h2
2
=  
7.2882 -  7.2884- 4·7.2882·3.5022
2
=  
53.11 -  2820.7- 4·53.11·12.26
2
=  
53.11 -  216.19
2
= 4.382

Площадь:
S =
h·c
2
=
3.502·7.288
2
= 12.76

Радиус описанной окружности:
R =
c
2
=
7.288
2
= 3.644

Медиана:
Mc =
c
2
=
7.288
2
= 3.644

Радиус вписанной окружности:
r =
a+b-c
2
=
4.382+5.82-7.288
2
= 1.457

Периметр:
P = a+b+c
= 4.382+5.82+7.288
= 17.49
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: