Решение треугольника c катетом 0.3 и углом 70 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.3
b=0.3001
c=0.3193
70°
20°
S=0.01638
P=0.9194
r=0.1404
R=0.1597
h=0.1026
mc=0.1597
Гипотенуза:
c =
a
sin(α°)
=
0.3
sin(70°)
=
0.3
0.9397
= 0.3193
Угол:
β° = 90°-α°
= 90°-70°
= 20°
Высота:
h = a·cos(α°)
= 0.3·cos(70°)
= 0.3·0.342
= 0.1026
Катет:
b = h·
c
a
= 0.1026·
0.3193
0.3
= 0.1092
или:
b = c2 - a2
= 0.31932 - 0.32
= 0.102 - 0.09
= 0.01195
= 0.1093
или:
b = c·sin(β°)
= 0.3193·sin(20°)
= 0.3193·0.342
= 0.1092
или:
b = c·cos(α°)
= 0.3193·cos(70°)
= 0.3193·0.342
= 0.1092
или:
b =
h
sin(α°)
=
0.1026
sin(70°)
=
0.1026
0.9397
= 0.1092
или:
b =
h
cos(β°)
=
0.1026
cos(20°)
=
0.1026
0.9397
= 0.1092
или:
b =
c2 + c4- 4c2h2
2
=
0.31932 + 0.31934- 4·0.31932·0.10262
2
=
0.102 + 0.0104- 4·0.102·0.01053
2
=
0.102 + 0.006104
2
= 0.3001
Площадь:
S =
h·c
2
=
0.1026·0.3193
2
= 0.01638
Радиус описанной окружности:
R =
c
2
=
0.3193
2
= 0.1597
Медиана:
Mc =
c
2
=
0.3193
2
= 0.1597
Радиус вписанной окружности:
r =
a+b-c
2
=
0.3+0.3001-0.3193
2
= 0.1404
Периметр:
P = a+b+c
= 0.3+0.3001+0.3193
= 0.9194
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: