меню

Решение треугольника c катетом 620 и углом 20 и углом 70 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=225.65
b=620
c=659.79
20°
70°
S=69950.9
P=1505.4
r=92.93
R=329.9
h=212.04
mc=329.9

Гипотенуза:
c =
b
sin(β°)
=
620
sin(70°)
=
620
0.9397
= 659.79
или:
c =
b
cos(α°)
=
620
cos(20°)
=
620
0.9397
= 659.79

Высота:
h = b·sin(α°)
= 620·sin(20°)
= 620·0.342
= 212.04
или:
h = b·cos(β°)
= 620·cos(70°)
= 620·0.342
= 212.04

Катет:
a = h·
c
b
= 212.04·
659.79
620
= 225.65
или:
a =  c2 - b2
=  659.792 - 6202
=  435322.8 - 384400
=  50922.8
= 225.66
или:
a = c·sin(α°)
= 659.79·sin(20°)
= 659.79·0.342
= 225.65
или:
a = c·cos(β°)
= 659.79·cos(70°)
= 659.79·0.342
= 225.65
или:
a =
h
cos(α°)
=
212.04
cos(20°)
=
212.04
0.9397
= 225.65
или:
a =
h
sin(β°)
=
212.04
sin(70°)
=
212.04
0.9397
= 225.65
или:
a =  
c2 -  c4- 4c2h2
2
=  
659.792 -  659.794- 4·659.792·212.042
2
=  
435322.8 -  189505940200- 4·435322.8·44961
2
=  
435322.8 -  111215746557
2
= 225.65

Площадь:
S =
h·c
2
=
212.04·659.79
2
= 69950.9

Радиус описанной окружности:
R =
c
2
=
659.79
2
= 329.9

Медиана:
Mc =
c
2
=
659.79
2
= 329.9

Радиус вписанной окружности:
r =
a+b-c
2
=
225.65+620-659.79
2
= 92.93

Периметр:
P = a+b+c
= 225.65+620+659.79
= 1505.4
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: