Решение треугольника c катетом 21 и углом 35 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=14.72
b=21
c=25.63
35°
55°
S=154.42
P=61.35
r=5.045
R=12.82
h=12.05
mc=12.82
Гипотенуза:
c =
b
cos(α°)
=
21
cos(35°)
=
21
0.8192
= 25.63
Угол:
β° = 90°-α°
= 90°-35°
= 55°
Высота:
h = b·sin(α°)
= 21·sin(35°)
= 21·0.5736
= 12.05
Катет:
a = h·
c
b
= 12.05·
25.63
21
= 14.71
или:
a = c2 - b2
= 25.632 - 212
= 656.9 - 441
= 215.9
= 14.69
или:
a = c·sin(α°)
= 25.63·sin(35°)
= 25.63·0.5736
= 14.7
или:
a = c·cos(β°)
= 25.63·cos(55°)
= 25.63·0.5736
= 14.7
или:
a =
h
cos(α°)
=
12.05
cos(35°)
=
12.05
0.8192
= 14.71
или:
a =
h
sin(β°)
=
12.05
sin(55°)
=
12.05
0.8192
= 14.71
или:
a =
c2 - c4- 4c2h2
2
=
25.632 - 25.634- 4·25.632·12.052
2
=
656.9 - 431517.6- 4·656.9·145.2
2
=
656.9 - 49990.1
2
= 14.72
Площадь:
S =
h·c
2
=
12.05·25.63
2
= 154.42
Радиус описанной окружности:
R =
c
2
=
25.63
2
= 12.82
Медиана:
Mc =
c
2
=
25.63
2
= 12.82
Радиус вписанной окружности:
r =
a+b-c
2
=
14.72+21-25.63
2
= 5.045
Периметр:
P = a+b+c
= 14.72+21+25.63
= 61.35
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: