меню

Решение треугольника c катетом 26,5 и углом 80 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=26.5
b=26.5
c=26.91
80°
10°
S=61.89
P=79.91
r=13.05
R=13.46
h=4.6
mc=13.46

Гипотенуза:
c =
a
sin(α°)
=
26.5
sin(80°)
=
26.5
0.9848
= 26.91

Угол:
β° = 90°-α°
= 90°-80°
= 10°

Высота:
h = a·cos(α°)
= 26.5·cos(80°)
= 26.5·0.1736
= 4.6

Катет:
b = h·
c
a
= 4.6·
26.91
26.5
= 4.671
или:
b =  c2 - a2
=  26.912 - 26.52
=  724.15 - 702.25
=  21.9
= 4.68
или:
b = c·sin(β°)
= 26.91·sin(10°)
= 26.91·0.1736
= 4.672
или:
b = c·cos(α°)
= 26.91·cos(80°)
= 26.91·0.1736
= 4.672
или:
b =
h
sin(α°)
=
4.6
sin(80°)
=
4.6
0.9848
= 4.671
или:
b =
h
cos(β°)
=
4.6
cos(10°)
=
4.6
0.9848
= 4.671
или:
b =  
c2 +  c4- 4c2h2
2
=  
26.912 +  26.914- 4·26.912·4.62
2
=  
724.15 +  524393.2- 4·724.15·21.16
2
=  
724.15 +  463101.1
2
= 26.5

Площадь:
S =
h·c
2
=
4.6·26.91
2
= 61.89

Радиус описанной окружности:
R =
c
2
=
26.91
2
= 13.46

Медиана:
Mc =
c
2
=
26.91
2
= 13.46

Радиус вписанной окружности:
r =
a+b-c
2
=
26.5+26.5-26.91
2
= 13.05

Периметр:
P = a+b+c
= 26.5+26.5+26.91
= 79.91
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: