Решение треугольника c гипотенузой 4000 и углом 85 и углом 5 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=3984.8
b=348.64
c=4000
85°
5°
S=694630.3
P=8333.4
r=166.72
R=2000
h=347.32
mc=2000
Катет:
a = c·sin(α°)
= 4000·sin(85°)
= 4000·0.9962
= 3984.8
или:
a = c·cos(β°)
= 4000·cos(5°)
= 4000·0.9962
= 3984.8
Катет:
b = c·sin(β°)
= 4000·sin(5°)
= 4000·0.08716
= 348.64
или:
b = c·cos(α°)
= 4000·cos(85°)
= 4000·0.08716
= 348.64
Радиус описанной окружности:
R =
c
2
=
4000
2
= 2000
Медиана:
Mc =
c
2
=
4000
2
= 2000
Высота:
h =
ab
c
=
3984.8·348.64
4000
= 347.32
или:
h = b·sin(α°)
= 348.64·sin(85°)
= 348.64·0.9962
= 347.32
или:
h = b·cos(β°)
= 348.64·cos(5°)
= 348.64·0.9962
= 347.32
или:
h = a·cos(α°)
= 3984.8·cos(85°)
= 3984.8·0.08716
= 347.32
или:
h = a·sin(β°)
= 3984.8·sin(5°)
= 3984.8·0.08716
= 347.32
Площадь:
S =
ab
2
=
3984.8·348.64
2
= 694630.3
Радиус вписанной окружности:
r =
a+b-c
2
=
3984.8+348.64-4000
2
= 166.72
Периметр:
P = a+b+c
= 3984.8+348.64+4000
= 8333.4
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: