Решение треугольника c катетом 10 и углом 3 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.5242
b=10
c=10.01
3°
87°
S=2.62
P=20.53
r=0.2571
R=5.005
h=0.5234
mc=5.005
Гипотенуза:
c =
b
cos(α°)
=
10
cos(3°)
=
10
0.9986
= 10.01
Угол:
β° = 90°-α°
= 90°-3°
= 87°
Высота:
h = b·sin(α°)
= 10·sin(3°)
= 10·0.05234
= 0.5234
Катет:
a = h·
c
b
= 0.5234·
10.01
10
= 0.5239
или:
a = c2 - b2
= 10.012 - 102
= 100.2 - 100
= 0.2001
= 0.4473
или:
a = c·sin(α°)
= 10.01·sin(3°)
= 10.01·0.05234
= 0.5239
или:
a = c·cos(β°)
= 10.01·cos(87°)
= 10.01·0.05234
= 0.5239
или:
a =
h
cos(α°)
=
0.5234
cos(3°)
=
0.5234
0.9986
= 0.5241
или:
a =
h
sin(β°)
=
0.5234
sin(87°)
=
0.5234
0.9986
= 0.5241
или:
a =
c2 - c4- 4c2h2
2
=
10.012 - 10.014- 4·10.012·0.52342
2
=
100.2 - 10040- 4·100.2·0.2739
2
=
100.2 - 9930.2
2
= 0.5242
Площадь:
S =
h·c
2
=
0.5234·10.01
2
= 2.62
Радиус описанной окружности:
R =
c
2
=
10.01
2
= 5.005
Медиана:
Mc =
c
2
=
10.01
2
= 5.005
Радиус вписанной окружности:
r =
a+b-c
2
=
0.5242+10-10.01
2
= 0.2571
Периметр:
P = a+b+c
= 0.5242+10+10.01
= 20.53
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: