Решение треугольника c катетом 420 и углом 21 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=161.24
b=420
c=449.87
21°
69°
S=33859.5
P=1031.1
r=65.69
R=224.94
h=150.53
mc=224.94
Гипотенуза:
c =
b
cos(α°)
=
420
cos(21°)
=
420
0.9336
= 449.87
Угол:
β° = 90°-α°
= 90°-21°
= 69°
Высота:
h = b·sin(α°)
= 420·sin(21°)
= 420·0.3584
= 150.53
Катет:
a = h·
c
b
= 150.53·
449.87
420
= 161.24
или:
a = c2 - b2
= 449.872 - 4202
= 202383 - 176400
= 25983
= 161.19
или:
a = c·sin(α°)
= 449.87·sin(21°)
= 449.87·0.3584
= 161.23
или:
a = c·cos(β°)
= 449.87·cos(69°)
= 449.87·0.3584
= 161.23
или:
a =
h
cos(α°)
=
150.53
cos(21°)
=
150.53
0.9336
= 161.24
или:
a =
h
sin(β°)
=
150.53
sin(69°)
=
150.53
0.9336
= 161.24
или:
a =
c2 - c4- 4c2h2
2
=
449.872 - 449.874- 4·449.872·150.532
2
=
202383 - 40958878689- 4·202383·22659.3
2
=
202383 - 22615450241
2
= 161.24
Площадь:
S =
h·c
2
=
150.53·449.87
2
= 33859.5
Радиус описанной окружности:
R =
c
2
=
449.87
2
= 224.94
Медиана:
Mc =
c
2
=
449.87
2
= 224.94
Радиус вписанной окружности:
r =
a+b-c
2
=
161.24+420-449.87
2
= 65.69
Периметр:
P = a+b+c
= 161.24+420+449.87
= 1031.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: