Решение треугольника c катетом 175 и углом 31 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=175
b=174.99
c=204.15
59°
31°
S=9200
P=554.14
r=72.92
R=102.08
h=90.13
mc=102.08
Гипотенуза:
c =
a
cos(β°)
=
175
cos(31°)
=
175
0.8572
= 204.15
Угол:
α° = 90°-β°
= 90°-31°
= 59°
Высота:
h = a·sin(β°)
= 175·sin(31°)
= 175·0.515
= 90.13
Катет:
b = h·
c
a
= 90.13·
204.15
175
= 105.14
или:
b = c2 - a2
= 204.152 - 1752
= 41677.2 - 30625
= 11052.2
= 105.13
или:
b = c·sin(β°)
= 204.15·sin(31°)
= 204.15·0.515
= 105.14
или:
b = c·cos(α°)
= 204.15·cos(59°)
= 204.15·0.515
= 105.14
или:
b =
h
sin(α°)
=
90.13
sin(59°)
=
90.13
0.8572
= 105.14
или:
b =
h
cos(β°)
=
90.13
cos(31°)
=
90.13
0.8572
= 105.14
или:
b =
c2 + c4- 4c2h2
2
=
204.152 + 204.154- 4·204.152·90.132
2
=
41677.2 + 1736989000- 4·41677.2·8123.4
2
=
41677.2 + 382746734
2
= 174.99
Площадь:
S =
h·c
2
=
90.13·204.15
2
= 9200
Радиус описанной окружности:
R =
c
2
=
204.15
2
= 102.08
Медиана:
Mc =
c
2
=
204.15
2
= 102.08
Радиус вписанной окружности:
r =
a+b-c
2
=
175+174.99-204.15
2
= 72.92
Периметр:
P = a+b+c
= 175+174.99+204.15
= 554.14
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: