меню

Решение треугольника c катетом 173 и углом 31 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=173
b=172.99
c=201.82
59°
31°
S=8991.1
P=547.81
r=72.09
R=100.91
h=89.1
mc=100.91

Гипотенуза:
c =
a
cos(β°)
=
173
cos(31°)
=
173
0.8572
= 201.82

Угол:
α° = 90°-β°
= 90°-31°
= 59°

Высота:
h = a·sin(β°)
= 173·sin(31°)
= 173·0.515
= 89.1

Катет:
b = h·
c
a
= 89.1·
201.82
173
= 103.94
или:
b =  c2 - a2
=  201.822 - 1732
=  40731.3 - 29929
=  10802.3
= 103.93
или:
b = c·sin(β°)
= 201.82·sin(31°)
= 201.82·0.515
= 103.94
или:
b = c·cos(α°)
= 201.82·cos(59°)
= 201.82·0.515
= 103.94
или:
b =
h
sin(α°)
=
89.1
sin(59°)
=
89.1
0.8572
= 103.94
или:
b =
h
cos(β°)
=
89.1
cos(31°)
=
89.1
0.8572
= 103.94
или:
b =  
c2 +  c4- 4c2h2
2
=  
201.822 +  201.824- 4·201.822·89.12
2
=  
40731.3 +  1659038800- 4·40731.3·7938.8
2
=  
40731.3 +  365608222
2
= 172.99

Площадь:
S =
h·c
2
=
89.1·201.82
2
= 8991.1

Радиус описанной окружности:
R =
c
2
=
201.82
2
= 100.91

Медиана:
Mc =
c
2
=
201.82
2
= 100.91

Радиус вписанной окружности:
r =
a+b-c
2
=
173+172.99-201.82
2
= 72.09

Периметр:
P = a+b+c
= 173+172.99+201.82
= 547.81
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: