Решение треугольника c катетом 31 и углом 35 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=21.71
b=31
c=37.84
35°
55°
S=336.4
P=90.55
r=7.435
R=18.92
h=17.78
mc=18.92
Гипотенуза:
c =
b
cos(α°)
=
31
cos(35°)
=
31
0.8192
= 37.84
Угол:
β° = 90°-α°
= 90°-35°
= 55°
Высота:
h = b·sin(α°)
= 31·sin(35°)
= 31·0.5736
= 17.78
Катет:
a = h·
c
b
= 17.78·
37.84
31
= 21.7
или:
a = c2 - b2
= 37.842 - 312
= 1431.9 - 961
= 470.87
= 21.7
или:
a = c·sin(α°)
= 37.84·sin(35°)
= 37.84·0.5736
= 21.71
или:
a = c·cos(β°)
= 37.84·cos(55°)
= 37.84·0.5736
= 21.71
или:
a =
h
cos(α°)
=
17.78
cos(35°)
=
17.78
0.8192
= 21.7
или:
a =
h
sin(β°)
=
17.78
sin(55°)
=
17.78
0.8192
= 21.7
или:
a =
c2 - c4- 4c2h2
2
=
37.842 - 37.844- 4·37.842·17.782
2
=
1431.9 - 2050338- 4·1431.9·316.13
2
=
1431.9 - 239671.8
2
= 21.71
Площадь:
S =
h·c
2
=
17.78·37.84
2
= 336.4
Радиус описанной окружности:
R =
c
2
=
37.84
2
= 18.92
Медиана:
Mc =
c
2
=
37.84
2
= 18.92
Радиус вписанной окружности:
r =
a+b-c
2
=
21.71+31-37.84
2
= 7.435
Периметр:
P = a+b+c
= 21.71+31+37.84
= 90.55
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: