меню

Решение треугольника c катетом 1,5 и углом 35 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=1.5
b=2.142
c=2.615
35°
55°
S=1.607
P=6.257
r=0.5135
R=1.308
h=1.229
mc=1.308

Гипотенуза:
c =
a
sin(α°)
=
1.5
sin(35°)
=
1.5
0.5736
= 2.615

Угол:
β° = 90°-α°
= 90°-35°
= 55°

Высота:
h = a·cos(α°)
= 1.5·cos(35°)
= 1.5·0.8192
= 1.229

Катет:
b = h·
c
a
= 1.229·
2.615
1.5
= 2.143
или:
b =  c2 - a2
=  2.6152 - 1.52
=  6.838 - 2.25
=  4.588
= 2.142
или:
b = c·sin(β°)
= 2.615·sin(55°)
= 2.615·0.8192
= 2.142
или:
b = c·cos(α°)
= 2.615·cos(35°)
= 2.615·0.8192
= 2.142
или:
b =
h
sin(α°)
=
1.229
sin(35°)
=
1.229
0.5736
= 2.143
или:
b =
h
cos(β°)
=
1.229
cos(55°)
=
1.229
0.5736
= 2.143
или:
b =  
c2 +  c4- 4c2h2
2
=  
2.6152 +  2.6154- 4·2.6152·1.2292
2
=  
6.838 +  46.76- 4·6.838·1.51
2
=  
6.838 +  5.458
2
= 2.142

Площадь:
S =
h·c
2
=
1.229·2.615
2
= 1.607

Радиус описанной окружности:
R =
c
2
=
2.615
2
= 1.308

Медиана:
Mc =
c
2
=
2.615
2
= 1.308

Радиус вписанной окружности:
r =
a+b-c
2
=
1.5+2.142-2.615
2
= 0.5135

Периметр:
P = a+b+c
= 1.5+2.142+2.615
= 6.257
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: