Решение треугольника c катетом 3,57 и углом 19 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1.229
b=3.57
c=3.776
19°
71°
S=2.194
P=8.575
r=0.5115
R=1.888
h=1.162
mc=1.888
Гипотенуза:
c =
b
cos(α°)
=
3.57
cos(19°)
=
3.57
0.9455
= 3.776
Угол:
β° = 90°-α°
= 90°-19°
= 71°
Высота:
h = b·sin(α°)
= 3.57·sin(19°)
= 3.57·0.3256
= 1.162
Катет:
a = h·
c
b
= 1.162·
3.776
3.57
= 1.229
или:
a = c2 - b2
= 3.7762 - 3.572
= 14.26 - 12.74
= 1.513
= 1.23
или:
a = c·sin(α°)
= 3.776·sin(19°)
= 3.776·0.3256
= 1.229
или:
a = c·cos(β°)
= 3.776·cos(71°)
= 3.776·0.3256
= 1.229
или:
a =
h
cos(α°)
=
1.162
cos(19°)
=
1.162
0.9455
= 1.229
или:
a =
h
sin(β°)
=
1.162
sin(71°)
=
1.162
0.9455
= 1.229
или:
a =
c2 - c4- 4c2h2
2
=
3.7762 - 3.7764- 4·3.7762·1.1622
2
=
14.26 - 203.35- 4·14.26·1.35
2
=
14.26 - 126.35
2
= 1.229
Площадь:
S =
h·c
2
=
1.162·3.776
2
= 2.194
Радиус описанной окружности:
R =
c
2
=
3.776
2
= 1.888
Медиана:
Mc =
c
2
=
3.776
2
= 1.888
Радиус вписанной окружности:
r =
a+b-c
2
=
1.229+3.57-3.776
2
= 0.5115
Периметр:
P = a+b+c
= 1.229+3.57+3.776
= 8.575
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: