Решение треугольника c катетом 237,5 и углом 35 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=166.32
b=237.5
c=289.92
35°
55°
S=19747.9
P=693.74
r=56.95
R=144.96
h=136.23
mc=144.96
Гипотенуза:
c =
b
cos(α°)
=
237.5
cos(35°)
=
237.5
0.8192
= 289.92
Угол:
β° = 90°-α°
= 90°-35°
= 55°
Высота:
h = b·sin(α°)
= 237.5·sin(35°)
= 237.5·0.5736
= 136.23
Катет:
a = h·
c
b
= 136.23·
289.92
237.5
= 166.3
или:
a = c2 - b2
= 289.922 - 237.52
= 84053.6 - 56406.3
= 27647.4
= 166.28
или:
a = c·sin(α°)
= 289.92·sin(35°)
= 289.92·0.5736
= 166.3
или:
a = c·cos(β°)
= 289.92·cos(55°)
= 289.92·0.5736
= 166.3
или:
a =
h
cos(α°)
=
136.23
cos(35°)
=
136.23
0.8192
= 166.3
или:
a =
h
sin(β°)
=
136.23
sin(55°)
=
136.23
0.8192
= 166.3
или:
a =
c2 - c4- 4c2h2
2
=
289.922 - 289.924- 4·289.922·136.232
2
=
84053.6 - 7065007673- 4·84053.6·18558.6
2
=
84053.6 - 825339109
2
= 166.32
Площадь:
S =
h·c
2
=
136.23·289.92
2
= 19747.9
Радиус описанной окружности:
R =
c
2
=
289.92
2
= 144.96
Медиана:
Mc =
c
2
=
289.92
2
= 144.96
Радиус вписанной окружности:
r =
a+b-c
2
=
166.32+237.5-289.92
2
= 56.95
Периметр:
P = a+b+c
= 166.32+237.5+289.92
= 693.74
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: