Решение треугольника c катетом 426 и углом 15 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=114.14
b=426
c=441.04
15°
75°
S=24312.3
P=981.18
r=49.55
R=220.52
h=110.25
mc=220.52
Гипотенуза:
c =
b
cos(α°)
=
426
cos(15°)
=
426
0.9659
= 441.04
Угол:
β° = 90°-α°
= 90°-15°
= 75°
Высота:
h = b·sin(α°)
= 426·sin(15°)
= 426·0.2588
= 110.25
Катет:
a = h·
c
b
= 110.25·
441.04
426
= 114.14
или:
a = c2 - b2
= 441.042 - 4262
= 194516.3 - 181476
= 13040.3
= 114.19
или:
a = c·sin(α°)
= 441.04·sin(15°)
= 441.04·0.2588
= 114.14
или:
a = c·cos(β°)
= 441.04·cos(75°)
= 441.04·0.2588
= 114.14
или:
a =
h
cos(α°)
=
110.25
cos(15°)
=
110.25
0.9659
= 114.14
или:
a =
h
sin(β°)
=
110.25
sin(75°)
=
110.25
0.9659
= 114.14
или:
a =
c2 - c4- 4c2h2
2
=
441.042 - 441.044- 4·441.042·110.252
2
=
194516.3 - 37836590966- 4·194516.3·12155.1
2
=
194516.3 - 28379130653
2
= 114.14
Площадь:
S =
h·c
2
=
110.25·441.04
2
= 24312.3
Радиус описанной окружности:
R =
c
2
=
441.04
2
= 220.52
Медиана:
Mc =
c
2
=
441.04
2
= 220.52
Радиус вписанной окружности:
r =
a+b-c
2
=
114.14+426-441.04
2
= 49.55
Периметр:
P = a+b+c
= 114.14+426+441.04
= 981.18
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: