меню

Решение треугольника c катетом 92 и катетом 100 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=92
b=100
c=135.88
42.6°
47.4°
S=4600
P=327.88
r=28.06
R=67.94
h=67.71
mc=67.94

Гипотенуза:
c =  a2 + b2
=  922 + 1002
=  8464 + 10000
=  18464
= 135.88

Площадь:
S =
ab
2
=
92·100
2
= 4600

Угол:
α° = arcsin
a
c
= arcsin
92
135.88
= 42.6°

Угол:
β° = arcsin
b
c
= arcsin
100
135.88
= 47.4°

Высота:
h =
ab
c
=
92·100
135.88
= 67.71
или:
h =
2S
c
=
2 · 4600
135.88
= 67.71

Радиус вписанной окружности:
r =
a+b-c
2
=
92+100-135.88
2
= 28.06

Радиус описанной окружности:
R =
c
2
=
135.88
2
= 67.94

Периметр:
P = a+b+c
= 92+100+135.88
= 327.88

Медиана:
Mc =
c
2
=
135.88
2
= 67.94
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: