Решение треугольника c катетом 1,5 и углом 7 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.1842
b=1.5
c=1.511
7°
83°
S=0.1382
P=3.195
r=0.0866
R=0.7555
h=0.1829
mc=0.7555
Гипотенуза:
c =
b
cos(α°)
=
1.5
cos(7°)
=
1.5
0.9925
= 1.511
Угол:
β° = 90°-α°
= 90°-7°
= 83°
Высота:
h = b·sin(α°)
= 1.5·sin(7°)
= 1.5·0.1219
= 0.1829
Катет:
a = h·
c
b
= 0.1829·
1.511
1.5
= 0.1842
или:
a = c2 - b2
= 1.5112 - 1.52
= 2.283 - 2.25
= 0.03312
= 0.182
или:
a = c·sin(α°)
= 1.511·sin(7°)
= 1.511·0.1219
= 0.1842
или:
a = c·cos(β°)
= 1.511·cos(83°)
= 1.511·0.1219
= 0.1842
или:
a =
h
cos(α°)
=
0.1829
cos(7°)
=
0.1829
0.9925
= 0.1843
или:
a =
h
sin(β°)
=
0.1829
sin(83°)
=
0.1829
0.9925
= 0.1843
или:
a =
c2 - c4- 4c2h2
2
=
1.5112 - 1.5114- 4·1.5112·0.18292
2
=
2.283 - 5.212- 4·2.283·0.03345
2
=
2.283 - 4.907
2
= 0.1842
Площадь:
S =
h·c
2
=
0.1829·1.511
2
= 0.1382
Радиус описанной окружности:
R =
c
2
=
1.511
2
= 0.7555
Медиана:
Mc =
c
2
=
1.511
2
= 0.7555
Радиус вписанной окружности:
r =
a+b-c
2
=
0.1842+1.5-1.511
2
= 0.0866
Периметр:
P = a+b+c
= 0.1842+1.5+1.511
= 3.195
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: