меню

Решение треугольника c катетом 1488 и катетом 1111 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=1488
b=1111
c=1857
53.3°
36.7°
S=826584
P=4456
r=371
R=928.5
h=890.24
mc=928.5

Гипотенуза:
c =  a2 + b2
=  14882 + 11112
=  2214144 + 1234321
=  3448465
= 1857

Площадь:
S =
ab
2
=
1488·1111
2
= 826584

Угол:
α° = arcsin
a
c
= arcsin
1488
1857
= 53.3°

Угол:
β° = arcsin
b
c
= arcsin
1111
1857
= 36.7°

Высота:
h =
ab
c
=
1488·1111
1857
= 890.24
или:
h =
2S
c
=
2 · 826584
1857
= 890.24

Радиус вписанной окружности:
r =
a+b-c
2
=
1488+1111-1857
2
= 371

Радиус описанной окружности:
R =
c
2
=
1857
2
= 928.5

Периметр:
P = a+b+c
= 1488+1111+1857
= 4456

Медиана:
Mc =
c
2
=
1857
2
= 928.5
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: