меню

Решение треугольника c катетом 85 и гипотенузой 90 и углом 20 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=85
b=30.78
c=90
70°
20°
S=1308.2
P=205.78
r=12.89
R=45
h=29.07
mc=45

Катет:
b =  c2 - a2
=  902 - 852
=  8100 - 7225
=  875
= 29.58
или:
b = c·sin(β°)
= 90·sin(20°)
= 90·0.342
= 30.78

Угол:
α° = arcsin
a
c
= arcsin
85
90
= 70.8°
или:
α° = 90°-β°
= 90°-20°
= 70°

Высота:
h = a·sin(β°)
= 85·sin(20°)
= 85·0.342
= 29.07

Радиус описанной окружности:
R =
c
2
=
90
2
= 45

Медиана:
Mc =
c
2
=
90
2
= 45

Площадь:
S =
ab
2
=
85·30.78
2
= 1308.2
или:
S =
h·c
2
=
29.07·90
2
= 1308.2

Радиус вписанной окружности:
r =
a+b-c
2
=
85+30.78-90
2
= 12.89

Периметр:
P = a+b+c
= 85+30.78+90
= 205.78
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: