меню

Решение треугольника c катетом 5040 и углом 5 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=440.97
b=5040
c=5059.2
85°
S=1111228
P=10540.2
r=210.89
R=2529.6
h=439.29
mc=2529.6

Гипотенуза:
c =
b
cos(α°)
=
5040
cos(5°)
=
5040
0.9962
= 5059.2

Угол:
β° = 90°-α°
= 90°-5°
= 85°

Высота:
h = b·sin(α°)
= 5040·sin(5°)
= 5040·0.08716
= 439.29

Катет:
a = h·
c
b
= 439.29·
5059.2
5040
= 440.96
или:
a =  c2 - b2
=  5059.22 - 50402
=  25595505 - 25401600
=  193904.6
= 440.35
или:
a = c·sin(α°)
= 5059.2·sin(5°)
= 5059.2·0.08716
= 440.96
или:
a = c·cos(β°)
= 5059.2·cos(85°)
= 5059.2·0.08716
= 440.96
или:
a =
h
cos(α°)
=
439.29
cos(5°)
=
439.29
0.9962
= 440.97
или:
a =
h
sin(β°)
=
439.29
sin(85°)
=
439.29
0.9962
= 440.97
или:
a =  
c2 -  c4- 4c2h2
2
=  
5059.22 -  5059.24- 4·5059.22·439.292
2
=  
25595505 -  6.5512987620502E+14- 4·25595505·192975.7
2
=  
25595505 -  6.3537263422811E+14
2
= 440.97

Площадь:
S =
h·c
2
=
439.29·5059.2
2
= 1111228

Радиус описанной окружности:
R =
c
2
=
5059.2
2
= 2529.6

Медиана:
Mc =
c
2
=
5059.2
2
= 2529.6

Радиус вписанной окружности:
r =
a+b-c
2
=
440.97+5040-5059.2
2
= 210.89

Периметр:
P = a+b+c
= 440.97+5040+5059.2
= 10540.2
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: