Решение треугольника c катетом 20 и углом 1 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=20
b=20
c=20
89°
1°
S=3.49
P=60
r=10
R=10
h=0.349
mc=10
Гипотенуза:
c =
a
cos(β°)
=
20
cos(1°)
=
20
0.9998
= 20
Угол:
α° = 90°-β°
= 90°-1°
= 89°
Высота:
h = a·sin(β°)
= 20·sin(1°)
= 20·0.01745
= 0.349
Катет:
b = h·
c
a
= 0.349·
20
20
= 0.349
или:
b = c2 - a2
= 202 - 202
= 400 - 400
= 0
= 0
или:
b = c·sin(β°)
= 20·sin(1°)
= 20·0.01745
= 0.349
или:
b = c·cos(α°)
= 20·cos(89°)
= 20·0.01745
= 0.349
или:
b =
h
sin(α°)
=
0.349
sin(89°)
=
0.349
0.9998
= 0.3491
или:
b =
h
cos(β°)
=
0.349
cos(1°)
=
0.349
0.9998
= 0.3491
или:
b =
c2 + c4- 4c2h2
2
=
202 + 204- 4·202·0.3492
2
=
400 + 160000- 4·400·0.1218
2
=
400 + 159805.1
2
= 20
Площадь:
S =
h·c
2
=
0.349·20
2
= 3.49
Радиус описанной окружности:
R =
c
2
=
20
2
= 10
Медиана:
Mc =
c
2
=
20
2
= 10
Радиус вписанной окружности:
r =
a+b-c
2
=
20+20-20
2
= 10
Периметр:
P = a+b+c
= 20+20+20
= 60
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: