Решение треугольника c катетом 6800 и углом 15 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1821.9
b=6800
c=7040.1
15°
75°
S=6194584
P=15662
r=790.9
R=3520.1
h=1759.8
mc=3520.1
Гипотенуза:
c =
b
cos(α°)
=
6800
cos(15°)
=
6800
0.9659
= 7040.1
Угол:
β° = 90°-α°
= 90°-15°
= 75°
Высота:
h = b·sin(α°)
= 6800·sin(15°)
= 6800·0.2588
= 1759.8
Катет:
a = h·
c
b
= 1759.8·
7040.1
6800
= 1821.9
или:
a = c2 - b2
= 7040.12 - 68002
= 49563008 - 46240000
= 3323008
= 1822.9
или:
a = c·sin(α°)
= 7040.1·sin(15°)
= 7040.1·0.2588
= 1822
или:
a = c·cos(β°)
= 7040.1·cos(75°)
= 7040.1·0.2588
= 1822
или:
a =
h
cos(α°)
=
1759.8
cos(15°)
=
1759.8
0.9659
= 1821.9
или:
a =
h
sin(β°)
=
1759.8
sin(75°)
=
1759.8
0.9659
= 1821.9
или:
a =
c2 - c4- 4c2h2
2
=
7040.12 - 7040.14- 4·7040.12·1759.82
2
=
49563008 - 2.4564917620081E+15- 4·49563008·3096896
2
=
49563008 - 1.8425258371154E+15
2
= 1821.9
Площадь:
S =
h·c
2
=
1759.8·7040.1
2
= 6194584
Радиус описанной окружности:
R =
c
2
=
7040.1
2
= 3520.1
Медиана:
Mc =
c
2
=
7040.1
2
= 3520.1
Радиус вписанной окружности:
r =
a+b-c
2
=
1821.9+6800-7040.1
2
= 790.9
Периметр:
P = a+b+c
= 1821.9+6800+7040.1
= 15662
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: