меню

Решение треугольника c катетом 192,5 и гипотенузой 194,8 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=29.85
b=192.5
c=194.8
8.8°
81.2°
S=2873.1
P=417.15
r=13.78
R=97.4
h=29.5
mc=97.4

Катет:
a =  c2 - b2
=  194.82 - 192.52
=  37947 - 37056.3
=  890.79
= 29.85

Угол:
β° = arcsin
b
c
= arcsin
192.5
194.8
= 81.2°

Радиус описанной окружности:
R =
c
2
=
194.8
2
= 97.4

Медиана:
Mc =
c
2
=
194.8
2
= 97.4

Угол:
α° = arcsin
a
c
= arcsin
29.85
194.8
= 8.8°
или:
α° = 90°-β°
= 90°-81.2°
= 8.8°

Высота:
h =
ab
c
=
29.85·192.5
194.8
= 29.5
или:
h = b·cos(β°)
= 192.5·cos(81.2°)
= 192.5·0.153
= 29.45
или:
h = a·sin(β°)
= 29.85·sin(81.2°)
= 29.85·0.9882
= 29.5

Площадь:
S =
ab
2
=
29.85·192.5
2
= 2873.1

Радиус вписанной окружности:
r =
a+b-c
2
=
29.85+192.5-194.8
2
= 13.78

Периметр:
P = a+b+c
= 29.85+192.5+194.8
= 417.15
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: