меню

Решение треугольника c катетом 15 и гипотенузой 24 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Ответ:
Прямоугольный треугольник
a=18.73
b=15
c=24
51.3°
38.7°
S=140.48
P=57.73
r=4.865
R=12
h=11.71
mc=12

Катет:
a =  c2 - b2
=  242 - 152
=  576 - 225
=  351
= 18.73

Угол:
β° = arcsin
b
c
= arcsin
15
24
= 38.7°

Радиус описанной окружности:
R =
c
2
=
24
2
= 12

Медиана:
Mc =
c
2
=
24
2
= 12

Угол:
α° = arcsin
a
c
= arcsin
18.73
24
= 51.3°
или:
α° = 90°-β°
= 90°-38.7°
= 51.3°

Высота:
h =
ab
c
=
18.73·15
24
= 11.71
или:
h = b·cos(β°)
= 15·cos(38.7°)
= 15·0.7804
= 11.71
или:
h = a·sin(β°)
= 18.73·sin(38.7°)
= 18.73·0.6252
= 11.71

Площадь:
S =
ab
2
=
18.73·15
2
= 140.48

Радиус вписанной окружности:
r =
a+b-c
2
=
18.73+15-24
2
= 4.865

Периметр:
P = a+b+c
= 18.73+15+24
= 57.73
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: