Решение треугольника c катетом 1 и углом 37,9 и углом 52.1 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1
b=1.285
c=1.628
37.9°
52.1°
S=0.6423
P=3.913
r=0.3285
R=0.814
h=0.7891
mc=0.814
Гипотенуза:
c =
a
sin(α°)
=
1
sin(37.9°)
=
1
0.6143
= 1.628
или:
c =
a
cos(β°)
=
1
cos(52.1°)
=
1
0.6143
= 1.628
Высота:
h = a·cos(α°)
= 1·cos(37.9°)
= 1·0.7891
= 0.7891
или:
h = a·sin(β°)
= 1·sin(52.1°)
= 1·0.7891
= 0.7891
Катет:
b = h·
c
a
= 0.7891·
1.628
1
= 1.285
или:
b = c2 - a2
= 1.6282 - 12
= 2.65 - 1
= 1.65
= 1.285
или:
b = c·sin(β°)
= 1.628·sin(52.1°)
= 1.628·0.7891
= 1.285
или:
b = c·cos(α°)
= 1.628·cos(37.9°)
= 1.628·0.7891
= 1.285
или:
b =
h
sin(α°)
=
0.7891
sin(37.9°)
=
0.7891
0.6143
= 1.285
или:
b =
h
cos(β°)
=
0.7891
cos(52.1°)
=
0.7891
0.6143
= 1.285
или:
b =
c2 + c4- 4c2h2
2
=
1.6282 + 1.6284- 4·1.6282·0.78912
2
=
2.65 + 7.023- 4·2.65·0.6227
2
=
2.65 + 0.4224
2
= 1.285
Площадь:
S =
h·c
2
=
0.7891·1.628
2
= 0.6423
Радиус описанной окружности:
R =
c
2
=
1.628
2
= 0.814
Медиана:
Mc =
c
2
=
1.628
2
= 0.814
Радиус вписанной окружности:
r =
a+b-c
2
=
1+1.285-1.628
2
= 0.3285
Периметр:
P = a+b+c
= 1+1.285+1.628
= 3.913
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: