Решение треугольника c катетом 1,5 и углом 28,1 и углом 61,9 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.801
b=1.5
c=1.7
28.1°
61.9°
S=0.6005
P=4.001
r=0.3005
R=0.85
h=0.7065
mc=0.85
Гипотенуза:
c =
b
sin(β°)
=
1.5
sin(61.9°)
=
1.5
0.8821
= 1.7
или:
c =
b
cos(α°)
=
1.5
cos(28.1°)
=
1.5
0.8821
= 1.7
Высота:
h = b·sin(α°)
= 1.5·sin(28.1°)
= 1.5·0.471
= 0.7065
или:
h = b·cos(β°)
= 1.5·cos(61.9°)
= 1.5·0.471
= 0.7065
Катет:
a = h·
c
b
= 0.7065·
1.7
1.5
= 0.8007
или:
a = c2 - b2
= 1.72 - 1.52
= 2.89 - 2.25
= 0.64
= 0.8
или:
a = c·sin(α°)
= 1.7·sin(28.1°)
= 1.7·0.471
= 0.8007
или:
a = c·cos(β°)
= 1.7·cos(61.9°)
= 1.7·0.471
= 0.8007
или:
a =
h
cos(α°)
=
0.7065
cos(28.1°)
=
0.7065
0.8821
= 0.8009
или:
a =
h
sin(β°)
=
0.7065
sin(61.9°)
=
0.7065
0.8821
= 0.8009
или:
a =
c2 - c4- 4c2h2
2
=
1.72 - 1.74- 4·1.72·0.70652
2
=
2.89 - 8.352- 4·2.89·0.4991
2
=
2.89 - 2.582
2
= 0.801
Площадь:
S =
h·c
2
=
0.7065·1.7
2
= 0.6005
Радиус описанной окружности:
R =
c
2
=
1.7
2
= 0.85
Медиана:
Mc =
c
2
=
1.7
2
= 0.85
Радиус вписанной окружности:
r =
a+b-c
2
=
0.801+1.5-1.7
2
= 0.3005
Периметр:
P = a+b+c
= 0.801+1.5+1.7
= 4.001
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: