меню

Решение треугольника c катетом 100 и углом 21 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=100
b=99.99
c=107.11
69°
21°
S=1919.4
P=307.1
r=46.44
R=53.56
h=35.84
mc=53.56

Гипотенуза:
c =
a
cos(β°)
=
100
cos(21°)
=
100
0.9336
= 107.11

Угол:
α° = 90°-β°
= 90°-21°
= 69°

Высота:
h = a·sin(β°)
= 100·sin(21°)
= 100·0.3584
= 35.84

Катет:
b = h·
c
a
= 35.84·
107.11
100
= 38.39
или:
b =  c2 - a2
=  107.112 - 1002
=  11472.6 - 10000
=  1472.6
= 38.37
или:
b = c·sin(β°)
= 107.11·sin(21°)
= 107.11·0.3584
= 38.39
или:
b = c·cos(α°)
= 107.11·cos(69°)
= 107.11·0.3584
= 38.39
или:
b =
h
sin(α°)
=
35.84
sin(69°)
=
35.84
0.9336
= 38.39
или:
b =
h
cos(β°)
=
35.84
cos(21°)
=
35.84
0.9336
= 38.39
или:
b =  
c2 +  c4- 4c2h2
2
=  
107.112 +  107.114- 4·107.112·35.842
2
=  
11472.6 +  131620551- 4·11472.6·1284.5
2
=  
11472.6 +  72674332
2
= 99.99

Площадь:
S =
h·c
2
=
35.84·107.11
2
= 1919.4

Радиус описанной окружности:
R =
c
2
=
107.11
2
= 53.56

Медиана:
Mc =
c
2
=
107.11
2
= 53.56

Радиус вписанной окружности:
r =
a+b-c
2
=
100+99.99-107.11
2
= 46.44

Периметр:
P = a+b+c
= 100+99.99+107.11
= 307.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: