меню

Решение треугольника c катетом 700 и катетом 6800 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=700
b=6800
c=6835.9
5.9°
84.1°
S=2380000
P=14335.9
r=332.05
R=3418
h=696.32
mc=3418

Гипотенуза:
c =  a2 + b2
=  7002 + 68002
=  490000 + 46240000
=  46730000
= 6835.9

Площадь:
S =
ab
2
=
700·6800
2
= 2380000

Угол:
α° = arcsin
a
c
= arcsin
700
6835.9
= 5.9°

Угол:
β° = arcsin
b
c
= arcsin
6800
6835.9
= 84.1°

Высота:
h =
ab
c
=
700·6800
6835.9
= 696.32
или:
h =
2S
c
=
2 · 2380000
6835.9
= 696.32

Радиус вписанной окружности:
r =
a+b-c
2
=
700+6800-6835.9
2
= 332.05

Радиус описанной окружности:
R =
c
2
=
6835.9
2
= 3418

Периметр:
P = a+b+c
= 700+6800+6835.9
= 14335.9

Медиана:
Mc =
c
2
=
6835.9
2
= 3418
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: