Решение треугольника c катетом 12,5 и углом 21 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=12.5
b=12.5
c=13.39
69°
21°
S=29.99
P=38.39
r=5.805
R=6.695
h=4.48
mc=6.695
Гипотенуза:
c =
a
cos(β°)
=
12.5
cos(21°)
=
12.5
0.9336
= 13.39
Угол:
α° = 90°-β°
= 90°-21°
= 69°
Высота:
h = a·sin(β°)
= 12.5·sin(21°)
= 12.5·0.3584
= 4.48
Катет:
b = h·
c
a
= 4.48·
13.39
12.5
= 4.799
или:
b = c2 - a2
= 13.392 - 12.52
= 179.29 - 156.25
= 23.04
= 4.8
или:
b = c·sin(β°)
= 13.39·sin(21°)
= 13.39·0.3584
= 4.799
или:
b = c·cos(α°)
= 13.39·cos(69°)
= 13.39·0.3584
= 4.799
или:
b =
h
sin(α°)
=
4.48
sin(69°)
=
4.48
0.9336
= 4.799
или:
b =
h
cos(β°)
=
4.48
cos(21°)
=
4.48
0.9336
= 4.799
или:
b =
c2 + c4- 4c2h2
2
=
13.392 + 13.394- 4·13.392·4.482
2
=
179.29 + 32144.9- 4·179.29·20.07
2
=
179.29 + 17751.5
2
= 12.5
Площадь:
S =
h·c
2
=
4.48·13.39
2
= 29.99
Радиус описанной окружности:
R =
c
2
=
13.39
2
= 6.695
Медиана:
Mc =
c
2
=
13.39
2
= 6.695
Радиус вписанной окружности:
r =
a+b-c
2
=
12.5+12.5-13.39
2
= 5.805
Периметр:
P = a+b+c
= 12.5+12.5+13.39
= 38.39
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: