меню

Решение треугольника c катетом 4,1 и углом 60 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=4.1
b=4.099
c=4.734
60°
30°
S=4.852
P=12.93
r=1.733
R=2.367
h=2.05
mc=2.367

Гипотенуза:
c =
a
sin(α°)
=
4.1
sin(60°)
=
4.1
0.866
= 4.734

Угол:
β° = 90°-α°
= 90°-60°
= 30°

Высота:
h = a·cos(α°)
= 4.1·cos(60°)
= 4.1·0.5
= 2.05

Катет:
b = h·
c
a
= 2.05·
4.734
4.1
= 2.367
или:
b =  c2 - a2
=  4.7342 - 4.12
=  22.41 - 16.81
=  5.601
= 2.367
или:
b = c·sin(β°)
= 4.734·sin(30°)
= 4.734·0.5
= 2.367
или:
b = c·cos(α°)
= 4.734·cos(60°)
= 4.734·0.5
= 2.367
или:
b =
h
sin(α°)
=
2.05
sin(60°)
=
2.05
0.866
= 2.367
или:
b =
h
cos(β°)
=
2.05
cos(30°)
=
2.05
0.866
= 2.367
или:
b =  
c2 +  c4- 4c2h2
2
=  
4.7342 +  4.7344- 4·4.7342·2.052
2
=  
22.41 +  502.21- 4·22.41·4.203
2
=  
22.41 +  125.45
2
= 4.099

Площадь:
S =
h·c
2
=
2.05·4.734
2
= 4.852

Радиус описанной окружности:
R =
c
2
=
4.734
2
= 2.367

Медиана:
Mc =
c
2
=
4.734
2
= 2.367

Радиус вписанной окружности:
r =
a+b-c
2
=
4.1+4.099-4.734
2
= 1.733

Периметр:
P = a+b+c
= 4.1+4.099+4.734
= 12.93
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: