Решение треугольника c катетом 2900 и углом 60 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2900
b=2900.1
c=3348.7
60°
30°
S=2427808
P=9148.8
r=1225.7
R=1674.4
h=1450
mc=1674.4
Гипотенуза:
c =
a
sin(α°)
=
2900
sin(60°)
=
2900
0.866
= 3348.7
Угол:
β° = 90°-α°
= 90°-60°
= 30°
Высота:
h = a·cos(α°)
= 2900·cos(60°)
= 2900·0.5
= 1450
Катет:
b = h·
c
a
= 1450·
3348.7
2900
= 1674.4
или:
b = c2 - a2
= 3348.72 - 29002
= 11213792 - 8410000
= 2803792
= 1674.5
или:
b = c·sin(β°)
= 3348.7·sin(30°)
= 3348.7·0.5
= 1674.4
или:
b = c·cos(α°)
= 3348.7·cos(60°)
= 3348.7·0.5
= 1674.4
или:
b =
h
sin(α°)
=
1450
sin(60°)
=
1450
0.866
= 1674.4
или:
b =
h
cos(β°)
=
1450
cos(30°)
=
1450
0.866
= 1674.4
или:
b =
c2 + c4- 4c2h2
2
=
3348.72 + 3348.74- 4·3348.72·14502
2
=
11213792 + 1.2574913101926E+14- 4·11213792·2102500
2
=
11213792 + 31441140299264
2
= 2900.1
Площадь:
S =
h·c
2
=
1450·3348.7
2
= 2427808
Радиус описанной окружности:
R =
c
2
=
3348.7
2
= 1674.4
Медиана:
Mc =
c
2
=
3348.7
2
= 1674.4
Радиус вписанной окружности:
r =
a+b-c
2
=
2900+2900.1-3348.7
2
= 1225.7
Периметр:
P = a+b+c
= 2900+2900.1+3348.7
= 9148.8
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: