меню

Решение треугольника c катетом 119,7 и катетом 86,6 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=119.7
b=86.6
c=147.74
54.1°
35.9°
S=5183
P=354.04
r=29.28
R=73.87
h=70.16
mc=73.87

Гипотенуза:
c =  a2 + b2
=  119.72 + 86.62
=  14328.1 + 7499.6
=  21827.7
= 147.74

Площадь:
S =
ab
2
=
119.7·86.6
2
= 5183

Угол:
α° = arcsin
a
c
= arcsin
119.7
147.74
= 54.1°

Угол:
β° = arcsin
b
c
= arcsin
86.6
147.74
= 35.9°

Высота:
h =
ab
c
=
119.7·86.6
147.74
= 70.16
или:
h =
2S
c
=
2 · 5183
147.74
= 70.16

Радиус вписанной окружности:
r =
a+b-c
2
=
119.7+86.6-147.74
2
= 29.28

Радиус описанной окружности:
R =
c
2
=
147.74
2
= 73.87

Периметр:
P = a+b+c
= 119.7+86.6+147.74
= 354.04

Медиана:
Mc =
c
2
=
147.74
2
= 73.87
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: