меню

Решение треугольника c катетом 1250 и углом 45 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=1245.8
b=1250
c=1767.8
45°
45°
S=781261.5
P=4263.6
r=364
R=883.9
h=883.88
mc=883.9

Гипотенуза:
c =
b
sin(β°)
=
1250
sin(45°)
=
1250
0.7071
= 1767.8

Угол:
α° = 90°-β°
= 90°-45°
= 45°

Высота:
h = b·cos(β°)
= 1250·cos(45°)
= 1250·0.7071
= 883.88

Катет:
a = h·
c
b
= 883.88·
1767.8
1250
= 1250
или:
a =  c2 - b2
=  1767.82 - 12502
=  3125117 - 1562500
=  1562617
= 1250
или:
a = c·sin(α°)
= 1767.8·sin(45°)
= 1767.8·0.7071
= 1250
или:
a = c·cos(β°)
= 1767.8·cos(45°)
= 1767.8·0.7071
= 1250
или:
a =
h
cos(α°)
=
883.88
cos(45°)
=
883.88
0.7071
= 1250
или:
a =
h
sin(β°)
=
883.88
sin(45°)
=
883.88
0.7071
= 1250
или:
a =  
c2 -  c4- 4c2h2
2
=  
1767.82 -  1767.84- 4·1767.82·883.882
2
=  
3125117 -  9766356263689- 4·3125117·781243.9
2
=  
3125117 -  441891544
2
= 1245.8

Площадь:
S =
h·c
2
=
883.88·1767.8
2
= 781261.5

Радиус описанной окружности:
R =
c
2
=
1767.8
2
= 883.9

Медиана:
Mc =
c
2
=
1767.8
2
= 883.9

Радиус вписанной окружности:
r =
a+b-c
2
=
1245.8+1250-1767.8
2
= 364

Периметр:
P = a+b+c
= 1245.8+1250+1767.8
= 4263.6
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: