меню

Решение треугольника c катетом 85 и углом 67,5 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=35.21
b=85
c=92
22.5°
67.5°
S=1496.4
P=212.21
r=14.11
R=46
h=32.53
mc=46

Гипотенуза:
c =
b
sin(β°)
=
85
sin(67.5°)
=
85
0.9239
= 92

Угол:
α° = 90°-β°
= 90°-67.5°
= 22.5°

Высота:
h = b·cos(β°)
= 85·cos(67.5°)
= 85·0.3827
= 32.53

Катет:
a = h·
c
b
= 32.53·
92
85
= 35.21
или:
a =  c2 - b2
=  922 - 852
=  8464 - 7225
=  1239
= 35.2
или:
a = c·sin(α°)
= 92·sin(22.5°)
= 92·0.3827
= 35.21
или:
a = c·cos(β°)
= 92·cos(67.5°)
= 92·0.3827
= 35.21
или:
a =
h
cos(α°)
=
32.53
cos(22.5°)
=
32.53
0.9239
= 35.21
или:
a =
h
sin(β°)
=
32.53
sin(67.5°)
=
32.53
0.9239
= 35.21
или:
a =  
c2 -  c4- 4c2h2
2
=  
922 -  924- 4·922·32.532
2
=  
8464 -  71639296- 4·8464·1058.2
2
=  
8464 -  35812877
2
= 35.21

Площадь:
S =
h·c
2
=
32.53·92
2
= 1496.4

Радиус описанной окружности:
R =
c
2
=
92
2
= 46

Медиана:
Mc =
c
2
=
92
2
= 46

Радиус вписанной окружности:
r =
a+b-c
2
=
35.21+85-92
2
= 14.11

Периметр:
P = a+b+c
= 35.21+85+92
= 212.21
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: