меню

Решение треугольника c катетом 3600 и углом 75 и углом 15 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=3600
b=3600.1
c=3727.1
75°
15°
S=1736232
P=10927.2
r=1736.5
R=1863.6
h=931.68
mc=1863.6

Гипотенуза:
c =
a
sin(α°)
=
3600
sin(75°)
=
3600
0.9659
= 3727.1
или:
c =
a
cos(β°)
=
3600
cos(15°)
=
3600
0.9659
= 3727.1

Высота:
h = a·cos(α°)
= 3600·cos(75°)
= 3600·0.2588
= 931.68
или:
h = a·sin(β°)
= 3600·sin(15°)
= 3600·0.2588
= 931.68

Катет:
b = h·
c
a
= 931.68·
3727.1
3600
= 964.57
или:
b =  c2 - a2
=  3727.12 - 36002
=  13891274 - 12960000
=  931274.4
= 965.03
или:
b = c·sin(β°)
= 3727.1·sin(15°)
= 3727.1·0.2588
= 964.57
или:
b = c·cos(α°)
= 3727.1·cos(75°)
= 3727.1·0.2588
= 964.57
или:
b =
h
sin(α°)
=
931.68
sin(75°)
=
931.68
0.9659
= 964.57
или:
b =
h
cos(β°)
=
931.68
cos(15°)
=
931.68
0.9659
= 964.57
или:
b =  
c2 +  c4- 4c2h2
2
=  
3727.12 +  3727.14- 4·3727.12·931.682
2
=  
13891274 +  1.9296749334308E+14- 4·13891274·868027.6
2
=  
13891274 +  1.4473545641843E+14
2
= 3600.1

Площадь:
S =
h·c
2
=
931.68·3727.1
2
= 1736232

Радиус описанной окружности:
R =
c
2
=
3727.1
2
= 1863.6

Медиана:
Mc =
c
2
=
3727.1
2
= 1863.6

Радиус вписанной окружности:
r =
a+b-c
2
=
3600+3600.1-3727.1
2
= 1736.5

Периметр:
P = a+b+c
= 3600+3600.1+3727.1
= 10927.2
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: