меню

Решение треугольника c катетом 6.56 и гипотенузой 6.90 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=2.139
b=6.56
c=6.90
18.1°
71.9°
S=7.016
P=15.6
r=0.8995
R=3.45
h=2.033
mc=3.45

Катет:
a =  c2 - b2
=  6.902 - 6.562
=  47.61 - 43.03
=  4.576
= 2.139

Угол:
β° = arcsin
b
c
= arcsin
6.56
6.90
= 71.9°

Радиус описанной окружности:
R =
c
2
=
6.90
2
= 3.45

Медиана:
Mc =
c
2
=
6.90
2
= 3.45

Угол:
α° = arcsin
a
c
= arcsin
2.139
6.90
= 18.1°
или:
α° = 90°-β°
= 90°-71.9°
= 18.1°

Высота:
h =
ab
c
=
2.139·6.56
6.90
= 2.034
или:
h = b·cos(β°)
= 6.56·cos(71.9°)
= 6.56·0.3107
= 2.038
или:
h = a·sin(β°)
= 2.139·sin(71.9°)
= 2.139·0.9505
= 2.033

Площадь:
S =
ab
2
=
2.139·6.56
2
= 7.016

Радиус вписанной окружности:
r =
a+b-c
2
=
2.139+6.56-6.90
2
= 0.8995

Периметр:
P = a+b+c
= 2.139+6.56+6.90
= 15.6
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: