Решение треугольника c гипотенузой 6000 и углом 40,5 и высотой 300 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=300.38
b=5992.5
c=6000
40.5°
49.5°
S=900000
P=12292.9
r=146.44
R=3000
h=300
mc=3000
Катет:
a = c·sin(α°)
= 6000·sin(40.5°)
= 6000·0.6494
= 3896.4
или:
a =
h
cos(α°)
=
300
cos(40.5°)
=
300
0.7604
= 394.53
или:
a =
c2 - c4- 4c2h2
2
=
60002 - 60004- 4·60002·3002
2
=
36000000 - 1.296E+15- 4·36000000·90000
2
=
36000000 - 1.28304E+15
2
= 300.38
Катет:
b = c·cos(α°)
= 6000·cos(40.5°)
= 6000·0.7604
= 4562.4
или:
b =
h
sin(α°)
=
300
sin(40.5°)
=
300
0.6494
= 461.96
или:
b =
c2 + c4- 4c2h2
2
=
60002 + 60004- 4·60002·3002
2
=
36000000 + 1.296E+15- 4·36000000·90000
2
=
36000000 + 1.28304E+15
2
= 5992.5
Угол:
β° = 90°-α°
= 90°-40.5°
= 49.5°
Площадь:
S =
h·c
2
=
300·6000
2
= 900000
Радиус описанной окружности:
R =
c
2
=
6000
2
= 3000
Медиана:
Mc =
c
2
=
6000
2
= 3000
Радиус вписанной окружности:
r =
a+b-c
2
=
300.38+5992.5-6000
2
= 146.44
Периметр:
P = a+b+c
= 300.38+5992.5+6000
= 12292.9
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: