меню

Решение треугольника c катетом 170 и углом 24 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=75.68
b=170
c=186.1
24°
66°
S=6433.5
P=431.78
r=29.79
R=93.05
h=69.14
mc=93.05

Гипотенуза:
c =
b
cos(α°)
=
170
cos(24°)
=
170
0.9135
= 186.1

Угол:
β° = 90°-α°
= 90°-24°
= 66°

Высота:
h = b·sin(α°)
= 170·sin(24°)
= 170·0.4067
= 69.14

Катет:
a = h·
c
b
= 69.14·
186.1
170
= 75.69
или:
a =  c2 - b2
=  186.12 - 1702
=  34633.2 - 28900
=  5733.2
= 75.72
или:
a = c·sin(α°)
= 186.1·sin(24°)
= 186.1·0.4067
= 75.69
или:
a = c·cos(β°)
= 186.1·cos(66°)
= 186.1·0.4067
= 75.69
или:
a =
h
cos(α°)
=
69.14
cos(24°)
=
69.14
0.9135
= 75.69
или:
a =
h
sin(β°)
=
69.14
sin(66°)
=
69.14
0.9135
= 75.69
или:
a =  
c2 -  c4- 4c2h2
2
=  
186.12 -  186.14- 4·186.12·69.142
2
=  
34633.2 -  1199458542- 4·34633.2·4780.3
2
=  
34633.2 -  537230198
2
= 75.68

Площадь:
S =
h·c
2
=
69.14·186.1
2
= 6433.5

Радиус описанной окружности:
R =
c
2
=
186.1
2
= 93.05

Медиана:
Mc =
c
2
=
186.1
2
= 93.05

Радиус вписанной окружности:
r =
a+b-c
2
=
75.68+170-186.1
2
= 29.79

Периметр:
P = a+b+c
= 75.68+170+186.1
= 431.78
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: