Решение треугольника c катетом 119,6 и углом 26,4 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=59.36
b=119.6
c=133.53
26.4°
63.6°
S=3549.9
P=312.49
r=22.72
R=66.77
h=53.17
mc=66.77
Гипотенуза:
c =
b
cos(α°)
=
119.6
cos(26.4°)
=
119.6
0.8957
= 133.53
Угол:
β° = 90°-α°
= 90°-26.4°
= 63.6°
Высота:
h = b·sin(α°)
= 119.6·sin(26.4°)
= 119.6·0.4446
= 53.17
Катет:
a = h·
c
b
= 53.17·
133.53
119.6
= 59.36
или:
a = c2 - b2
= 133.532 - 119.62
= 17830.3 - 14304.2
= 3526.1
= 59.38
или:
a = c·sin(α°)
= 133.53·sin(26.4°)
= 133.53·0.4446
= 59.37
или:
a = c·cos(β°)
= 133.53·cos(63.6°)
= 133.53·0.4446
= 59.37
или:
a =
h
cos(α°)
=
53.17
cos(26.4°)
=
53.17
0.8957
= 59.36
или:
a =
h
sin(β°)
=
53.17
sin(63.6°)
=
53.17
0.8957
= 59.36
или:
a =
c2 - c4- 4c2h2
2
=
133.532 - 133.534- 4·133.532·53.172
2
=
17830.3 - 317919598- 4·17830.3·2827
2
=
17830.3 - 116294566
2
= 59.36
Площадь:
S =
h·c
2
=
53.17·133.53
2
= 3549.9
Радиус описанной окружности:
R =
c
2
=
133.53
2
= 66.77
Медиана:
Mc =
c
2
=
133.53
2
= 66.77
Радиус вписанной окружности:
r =
a+b-c
2
=
59.36+119.6-133.53
2
= 22.72
Периметр:
P = a+b+c
= 59.36+119.6+133.53
= 312.49
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: