меню

Решение треугольника c катетом 125 и гипотенузой 180 и углом 45.57 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=128.54
b=125
c=180
45.57°
44.4°
S=8033.4
P=433.54
r=36.77
R=90
h=89.26
mc=90

Катет:
a =  c2 - b2
=  1802 - 1252
=  32400 - 15625
=  16775
= 129.52
или:
a = c·sin(α°)
= 180·sin(45.57°)
= 180·0.7141
= 128.54

Угол:
β° = arcsin
b
c
= arcsin
125
180
= 44°
или:
β° = 90°-α°
= 90°-45.57°
= 44.4°

Высота:
h = b·sin(α°)
= 125·sin(45.57°)
= 125·0.7141
= 89.26

Радиус описанной окружности:
R =
c
2
=
180
2
= 90

Медиана:
Mc =
c
2
=
180
2
= 90

Площадь:
S =
ab
2
=
128.54·125
2
= 8033.8
или:
S =
h·c
2
=
89.26·180
2
= 8033.4

Радиус вписанной окружности:
r =
a+b-c
2
=
128.54+125-180
2
= 36.77

Периметр:
P = a+b+c
= 128.54+125+180
= 433.54
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: