меню

Решение треугольника c катетом 570 и катетом 480 и углом 47 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=570
b=480
c=703.81
47°
43°
S=136800
P=1753.8
r=173.1
R=351.91
h=388.74
mc=351.91

Гипотенуза:
c =  a2 + b2
=  5702 + 4802
=  324900 + 230400
=  555300
= 745.18
или:
c =
a
sin(α°)
=
570
sin(47°)
=
570
0.7314
= 779.33
или:
c =
b
cos(α°)
=
480
cos(47°)
=
480
0.682
= 703.81

Угол:
β° = 90°-α°
= 90°-47°
= 43°

Высота:
h = b·sin(α°)
= 480·sin(47°)
= 480·0.7314
= 351.07
или:
h = a·cos(α°)
= 570·cos(47°)
= 570·0.682
= 388.74

Площадь:
S =
ab
2
=
570·480
2
= 136800

Радиус вписанной окружности:
r =
a+b-c
2
=
570+480-703.81
2
= 173.1

Радиус описанной окружности:
R =
c
2
=
703.81
2
= 351.91

Периметр:
P = a+b+c
= 570+480+703.81
= 1753.8

Медиана:
Mc =
c
2
=
703.81
2
= 351.91
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: