меню

Решение треугольника c катетом 7000 и углом 7 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=859.71
b=7000
c=7052.9
83°
S=3009120
P=14912.6
r=403.41
R=3526.5
h=853.3
mc=3526.5

Гипотенуза:
c =
b
cos(α°)
=
7000
cos(7°)
=
7000
0.9925
= 7052.9

Угол:
β° = 90°-α°
= 90°-7°
= 83°

Высота:
h = b·sin(α°)
= 7000·sin(7°)
= 7000·0.1219
= 853.3

Катет:
a = h·
c
b
= 853.3·
7052.9
7000
= 859.75
или:
a =  c2 - b2
=  7052.92 - 70002
=  49743398 - 49000000
=  743398.4
= 862.21
или:
a = c·sin(α°)
= 7052.9·sin(7°)
= 7052.9·0.1219
= 859.75
или:
a = c·cos(β°)
= 7052.9·cos(83°)
= 7052.9·0.1219
= 859.75
или:
a =
h
cos(α°)
=
853.3
cos(7°)
=
853.3
0.9925
= 859.75
или:
a =
h
sin(β°)
=
853.3
sin(83°)
=
853.3
0.9925
= 859.75
или:
a =  
c2 -  c4- 4c2h2
2
=  
7052.92 -  7052.94- 4·7052.92·853.32
2
=  
49743398 -  2.4744056445864E+15- 4·49743398·728120.9
2
=  
49743398 -  2.3295288137031E+15
2
= 859.71

Площадь:
S =
h·c
2
=
853.3·7052.9
2
= 3009120

Радиус описанной окружности:
R =
c
2
=
7052.9
2
= 3526.5

Медиана:
Mc =
c
2
=
7052.9
2
= 3526.5

Радиус вписанной окружности:
r =
a+b-c
2
=
859.71+7000-7052.9
2
= 403.41

Периметр:
P = a+b+c
= 859.71+7000+7052.9
= 14912.6
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: