Решение треугольника c катетом 3,8 и углом 20 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1.384
b=3.8
c=4.044
20°
70°
S=2.629
P=9.228
r=0.57
R=2.022
h=1.3
mc=2.022
Гипотенуза:
c =
b
cos(α°)
=
3.8
cos(20°)
=
3.8
0.9397
= 4.044
Угол:
β° = 90°-α°
= 90°-20°
= 70°
Высота:
h = b·sin(α°)
= 3.8·sin(20°)
= 3.8·0.342
= 1.3
Катет:
a = h·
c
b
= 1.3·
4.044
3.8
= 1.383
или:
a = c2 - b2
= 4.0442 - 3.82
= 16.35 - 14.44
= 1.914
= 1.383
или:
a = c·sin(α°)
= 4.044·sin(20°)
= 4.044·0.342
= 1.383
или:
a = c·cos(β°)
= 4.044·cos(70°)
= 4.044·0.342
= 1.383
или:
a =
h
cos(α°)
=
1.3
cos(20°)
=
1.3
0.9397
= 1.383
или:
a =
h
sin(β°)
=
1.3
sin(70°)
=
1.3
0.9397
= 1.383
или:
a =
c2 - c4- 4c2h2
2
=
4.0442 - 4.0444- 4·4.0442·1.32
2
=
16.35 - 267.32- 4·16.35·1.69
2
=
16.35 - 156.79
2
= 1.384
Площадь:
S =
h·c
2
=
1.3·4.044
2
= 2.629
Радиус описанной окружности:
R =
c
2
=
4.044
2
= 2.022
Медиана:
Mc =
c
2
=
4.044
2
= 2.022
Радиус вписанной окружности:
r =
a+b-c
2
=
1.384+3.8-4.044
2
= 0.57
Периметр:
P = a+b+c
= 1.384+3.8+4.044
= 9.228
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: