Решение треугольника c катетом 42 и углом 0,5 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=42
b=42
c=42
89.5°
0.5°
S=7.697
P=126
r=21
R=21
h=0.3665
mc=21
Гипотенуза:
c =
a
cos(β°)
=
42
cos(0.5°)
=
42
1
= 42
Угол:
α° = 90°-β°
= 90°-0.5°
= 89.5°
Высота:
h = a·sin(β°)
= 42·sin(0.5°)
= 42·0.008727
= 0.3665
Катет:
b = h·
c
a
= 0.3665·
42
42
= 0.3665
или:
b = c2 - a2
= 422 - 422
= 1764 - 1764
= 0
= 0
или:
b = c·sin(β°)
= 42·sin(0.5°)
= 42·0.008727
= 0.3665
или:
b = c·cos(α°)
= 42·cos(89.5°)
= 42·0.008727
= 0.3665
или:
b =
h
sin(α°)
=
0.3665
sin(89.5°)
=
0.3665
1
= 0.3665
или:
b =
h
cos(β°)
=
0.3665
cos(0.5°)
=
0.3665
1
= 0.3665
или:
b =
c2 + c4- 4c2h2
2
=
422 + 424- 4·422·0.36652
2
=
1764 + 3111696- 4·1764·0.1343
2
=
1764 + 3110748
2
= 42
Площадь:
S =
h·c
2
=
0.3665·42
2
= 7.697
Радиус описанной окружности:
R =
c
2
=
42
2
= 21
Медиана:
Mc =
c
2
=
42
2
= 21
Радиус вписанной окружности:
r =
a+b-c
2
=
42+42-42
2
= 21
Периметр:
P = a+b+c
= 42+42+42
= 126
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: