Решение треугольника c катетом 128 и углом 35 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=89.64
b=128
c=156.25
35°
55°
S=5735.9
P=373.89
r=30.7
R=78.13
h=73.42
mc=78.13
Гипотенуза:
c =
b
cos(α°)
=
128
cos(35°)
=
128
0.8192
= 156.25
Угол:
β° = 90°-α°
= 90°-35°
= 55°
Высота:
h = b·sin(α°)
= 128·sin(35°)
= 128·0.5736
= 73.42
Катет:
a = h·
c
b
= 73.42·
156.25
128
= 89.62
или:
a = c2 - b2
= 156.252 - 1282
= 24414.1 - 16384
= 8030.1
= 89.61
или:
a = c·sin(α°)
= 156.25·sin(35°)
= 156.25·0.5736
= 89.63
или:
a = c·cos(β°)
= 156.25·cos(55°)
= 156.25·0.5736
= 89.63
или:
a =
h
cos(α°)
=
73.42
cos(35°)
=
73.42
0.8192
= 89.62
или:
a =
h
sin(β°)
=
73.42
sin(55°)
=
73.42
0.8192
= 89.62
или:
a =
c2 - c4- 4c2h2
2
=
156.252 - 156.254- 4·156.252·73.422
2
=
24414.1 - 596048279- 4·24414.1·5390.5
2
=
24414.1 - 69631455
2
= 89.64
Площадь:
S =
h·c
2
=
73.42·156.25
2
= 5735.9
Радиус описанной окружности:
R =
c
2
=
156.25
2
= 78.13
Медиана:
Mc =
c
2
=
156.25
2
= 78.13
Радиус вписанной окружности:
r =
a+b-c
2
=
89.64+128-156.25
2
= 30.7
Периметр:
P = a+b+c
= 89.64+128+156.25
= 373.89
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: