меню

Решение треугольника c катетом 1100 и углом 82,87 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=137.57
b=1100
c=1108.5
7.1°
82.87°
S=75660.7
P=2346.1
r=64.54
R=554.25
h=136.51
mc=554.25

Гипотенуза:
c =
b
sin(β°)
=
1100
sin(82.87°)
=
1100
0.9923
= 1108.5

Угол:
α° = 90°-β°
= 90°-82.87°
= 7.1°

Высота:
h = b·cos(β°)
= 1100·cos(82.87°)
= 1100·0.1241
= 136.51

Катет:
a = h·
c
b
= 136.51·
1108.5
1100
= 137.56
или:
a =  c2 - b2
=  1108.52 - 11002
=  1228772 - 1210000
=  18772.3
= 137.01
или:
a = c·sin(α°)
= 1108.5·sin(7.1°)
= 1108.5·0.1236
= 137.01
или:
a = c·cos(β°)
= 1108.5·cos(82.87°)
= 1108.5·0.1241
= 137.56
или:
a =
h
cos(α°)
=
136.51
cos(7.1°)
=
136.51
0.9923
= 137.57
или:
a =
h
sin(β°)
=
136.51
sin(82.87°)
=
136.51
0.9923
= 137.57
или:
a =  
c2 -  c4- 4c2h2
2
=  
1108.52 -  1108.54- 4·1108.52·136.512
2
=  
1228772 -  1509880627984- 4·1228772·18635
2
=  
1228772 -  1418287963104
2
= 137.57

Площадь:
S =
h·c
2
=
136.51·1108.5
2
= 75660.7

Радиус описанной окружности:
R =
c
2
=
1108.5
2
= 554.25

Медиана:
Mc =
c
2
=
1108.5
2
= 554.25

Радиус вписанной окружности:
r =
a+b-c
2
=
137.57+1100-1108.5
2
= 64.54

Периметр:
P = a+b+c
= 137.57+1100+1108.5
= 2346.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: