меню

Решение треугольника c катетом 1,23 и гипотенузой 2,00 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=1.23
b=1.577
c=2.00
38°
52°
S=0.9699
P=4.807
r=0.4035
R=1
h=0.9692
mc=1

Катет:
b =  c2 - a2
=  2.002 - 1.232
=  4 - 1.513
=  2.487
= 1.577

Угол:
α° = arcsin
a
c
= arcsin
1.23
2.00
= 38°

Радиус описанной окружности:
R =
c
2
=
2.00
2
= 1

Медиана:
Mc =
c
2
=
2.00
2
= 1

Угол:
β° = arcsin
b
c
= arcsin
1.577
2.00
= 52°
или:
β° = 90°-α°
= 90°-38°
= 52°

Высота:
h =
ab
c
=
1.23·1.577
2.00
= 0.9699
или:
h = b·sin(α°)
= 1.577·sin(38°)
= 1.577·0.6157
= 0.971
или:
h = a·cos(α°)
= 1.23·cos(38°)
= 1.23·0.788
= 0.9692

Площадь:
S =
ab
2
=
1.23·1.577
2
= 0.9699

Радиус вписанной окружности:
r =
a+b-c
2
=
1.23+1.577-2.00
2
= 0.4035

Периметр:
P = a+b+c
= 1.23+1.577+2.00
= 4.807
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: